Large Scale DRAM Model

"DRAM Engineers"

Team Members

Abdulrahman Alqahtani

Demetria Shepherd

Colby Weber

Jinming Yang

Zeyu Zhang

Client

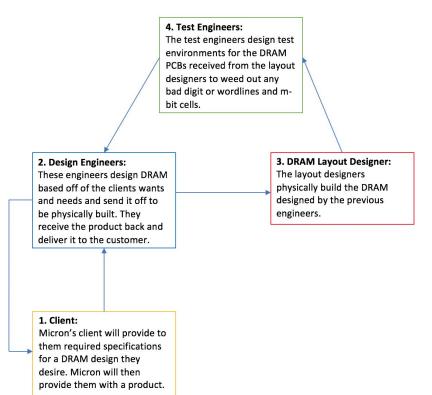
Daniel Eichenberger, Micron's testing engineer

Capstone Mentor

Ashwija Korenda, NAU graduate student

Faculty Mentor

Julie Heynssens, NAU Lecturer



Clients

- Daniel Eichenberger, Micron Test Engineer/Recruiter.
- Engineering Students interested in a career with Micron.
- Need a model to display how a basic DRAM array operates.

Micron DRAM Business Flow Diagram

What is DRAM?

Dynamic Random Access Memory:

- A type of memory used in computers, smartphones, and many modern technologies.
- This form of RAM is Dynamic, meaning it requires a refresh cycle.
- Comprised of an array of individual memory cells, m-bits.
- Our client, Micron is one of the largest DRAM manufacturers in the country.

Why a Large Scale DRAM Model?

- Currently, DRAM operations and functions cannot be simulated with just a DRAM PCB easily.
- Recruiters want an interactive tool to show prospective employees.
- Can also be used to test interviewee's knowledge of DRAM.

Basic DRAM Operation

Wordline or rowline $V_{cc}/2$ C1 M1Potential = V_{cc} for logic one and ground for logic zero. Digitline or columnline

The m-bit Cell:

- The main component for storing a bit of memory in the array.
- Comprised of an NMOS transistor with Gate tied to wordline, Drain tied to digitline, and source tied to a storage capacitor.
- Accessed by applying opening up the digitline, selecting the appropriate wordline by applying a small voltage, then the user can read or write to that cell.
- Needs to be refreshed at least every 64ms.

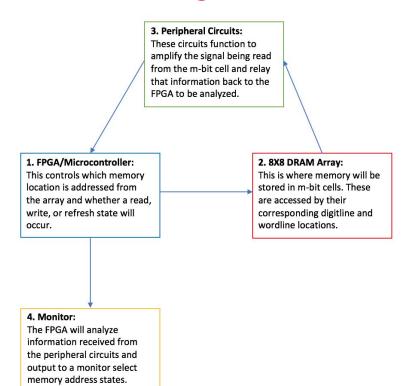
Basic DRAM Operation Cont.

The Peripheral Circuitry:

- Accesses the desired m-bit cell from user and reads the data stored on the m-bit.
- A Sense Amplifier identifies the data in the form of a small signal and amplifies the signal to a readable output.
- Circuitry inside the sense amp keeps digitline and wordline voltages low to prevent accidental access to other cells.

Project/Problem Definition

- Develop a large scale model of an 8x8 DRAM array.
- Needs to demonstrate read, write, and refresh cycles.
- Will be shown to prospective Micron employees.
- Currently Micron recruiters use a small DRAM PCB that cannot emulate DRAM operation.



Project Goal

Design and build a large scale DRAM by using:

- Capacitors
- MOSFETs
- LEDs or some display
- Microcontroller or FPGA (Field Programmable Gate Array)

Ideal Project Flow Diagram

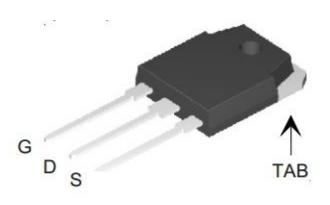
Possible Solutions

Possible Microcontrollers/FPGAs:

- Arduino Uno
- Raspberry Pi
- Altera Cyclone V

Possible Display solutions:

- 7-segment displays
- LEDs
- Serial Monitor/LCD Display


Possible Solutions Cont.

Possible Storage Capacitors:

- Ceramic
- Electrolytic
- Super

Possible Transistors:

- MOSFETs
- BJTs

G = Gate D = Drain S = Source TAB = Drain

Requirements and Specifications

Mechanical:

- Weigh between 0-5 lbs.
- Small enough to carry with one hand.
- Withstand table height drops (3 feet or less).

Electrical:

- 1.2V minimum required to be applied to access the wordline.
- Accurate enough to show different states.

Requirements and Specifications Cont.

Documentation:

User's guide will be provided by capstone team.

Software:

- Programming languages used will either be C or VHDL.
- Pyxis Mentor Graphics will prototype model.

Environmental:

Will be stored in a climate controlled room (between 70° - 85° Fahrenheit).

Conclusion

- Design and create an 8x8 DRAM array that simulates read, write, and refresh operations.
- Individual bits of memory can be accessed.
- Charge states, memory locations, and read and write voltages will be displayed.
- Can be transported easily.
- Solves the problem of demonstrating DRAM operations.

Questions?

